TOUR OF NORFOLK NAVAL BASE IR SITES June 19, 1996

ACTIVE SITES:

1) CAMP ALLEN LANDFILL

Site A

Operated 1940's - 1975; Municipal Solid Wastes GWTP/Dual-Phase Vapor Extraction - Summer 1997

Site B

One-time disposal of fire debris in 1971 Removal Action - 1994

2) CAMP ALLEN SALVAGE YARD

Operated since 1940's; Past storage of hazardous materials Scrap metal storage RI/FS Fieldwork - 1996

3) CD LANDFILL

Operated 1974 - 1986 Non-hazardous waste landfill PRAP/Decision Document - 1996; Cleanup late 1996/1997

4) Q AREA DRUM STORAGE YARD

Operated 1950's - 1980's Storage of hazardous materials; Paint thinners, Petroleum products RI/FS, PRAP/Decision Document - June 1996; Cleanup late 1996/1997

5) BUILDING W-316

Site still in use PCB Storage Area PA/SI Fieldwork - 1996

6) PESTICIDE DISPOSAL SITE

Operated 1960's - 1973 Soil near drain is contaminated RI/FS Fieldwork - 1996

7) BUILDING LP-20

Operated by NADEP, past Aircraft maintenance shop Groundwater contaminated with solvents RI/FS, PRAP/Decision Document - June 1996; Cleanup 1997

8) NM SLAG PILE

Operated 1950's - 1960's Steel disposal site RI/FS Fieldwork - 1996

- PROPOSED GROUNDWATER
 MONITORING WELL LOCATION*
- PROPOSED SOIL SAMPLING LOCATION*
- * LOCATIONS SUBJECT TO CHANGE BASED UPON INTERVIEW WITH BASE PERSONNEL

Figure 1-2
PROPOSED SOIL SAMPLING LOCATIONS
SITE 21 - BUILDING W316,
PCB WASTE WORK AREA
Naval Base, Norfolk

'n	SOIL SAMPLING	Table 1-2 PROGRAM FOR SI		TE 21 PA/SI		
Site	Sampling Location	TCL VOC	TCL SVOC	TCL Pest/PCB	TCL PCB	TAL Metals and Cyanide (total)
Site 5	NNBS05-SB01	x	х	х		х
Site 5	NNBS05-SB02	х	х	х		х
Site 5	NNBS05-SB03	х	Х	х		х
Site 5	NNBS05-SB04	х	х	х		х
Site 5	NNBS05-SB05	х	х	х		х
Site 5	NNBS05-SB06	х	х	х		х
Site 5	NNBS05-SS01	х	х	х		х
Site 5	NNBS05-SS02	х	х	х		х
Site 5	NNBS05-SS03	х	х	х		х
Site 5	NNBS05-SS04	х	х	х		х
Site 21	NNBS21-SB01				х	
Site 21	NNBS21-SB02				х	
Site 21	NNBS21-SB03				х	
Site 21	NNBS21-SB04				х	
Site 21	NNBS21-SS01				х	
Site 21	NNBS21-SS02				х	
Site 21	NNBS21-SS03				х	
Site 21	NNBS21-SS04				X	
Site 21	NNBS21-SS05				х	
Site 21	NNBS21-SS06				х	-
Site 21	NNBS21-SS07				х	
Site 21	NNBS21-SS08				х	
Site 21	NNBS21-SS09				х	
Site 21	NNBS21-SS10				х	

GROU	NDWATER AND SURFACE	WATER SAI	Table 1-3 MPLING PR	ROGRAM	FOR SITE	5 RI/FS AND SI	TE 21 PA/SI
Site	Sampling Location	TCL VOC	TCL SVOC	Pest/ PCB	PCB (filtered)	PCB (unfiltered)	TAL Metals and Cyanide (total)
Site 5	NNBS05-MW01	х	х	х			Х
Site 5	NNBS05-MW02	х	Х	х			Х
Site 5	NNBS05-MW03	х	Х	х			Х
Site 21	NNBS21-MW01				х	х	
Site 21	NNBS21-MW02				х	Х	

tab1-3.doc

NORFOLK, VIRGINIA THE STATE OF THE SELECT BE FIGURE 1-6 PREVIOUS ENVIRONMENTAL INVESTIGATIONS FIGURE 1-6 THE STATE OF 1-AA 19 Inch = 150 1t Baker | Site Location Map Air Sparging/Soil Vapor Extraction Pilot Test FIGURE 3-1 tiets. litio il 151.11 M-4 B E ... € 17-48 Fil 1 £1-mn 300 Pilot Test Locatio 51-20 1820 228 S-MS E-AS n 生るの ENGINE TEST AVENUE AVENUE O FI-MM ₩-20 BELLINGER BONLEUARD [2]

SCALE 1"=5"

FIGURE 4-1

Air Sparging/Soil Vapor Extraction Pilot Test

(NOT TO SCALE)

FIGURE 4-2

Air Sparging/Soil Vapor Extraction Pilot Test Cross-Section

	SOIL AND SEDIMENT S			M SLAG PILE RI/FS	Table 1-2 SOIL AND SEDIMENT SAMPLING PROGRAM FOR SITE 2 - NM SLAG PILE RI/FS								
Site	Sampling Location	TÇL VOC	TCL SVOC	TCL Pest/PCB	TAL Metals and Cyanide (total)								
Site 2	NNBS02-SS01	X	x	х	x								
Site 2	NNBS02-SS02	x	x	Х	x								
Site 2	NNBS02-SS03	х	x	х	x								
Site 2	NNBS02-SB01	Х	х	х	x								
Site 2	NNBS02-SB02	Х	х	х	x								
Site 2	NNBS02-SB03	х	х	х	х								
Site 2	NNBS02-SB04	х	х	х	х								
Site 2	NNBS02-SB05	Х	х	x	х								
Site 2	NNBS02-SB06	Х	х	х	х								
Site 2	NNBS02-SB07	Х	Х	х	x								
Site 2	NNBS02-SB08	Х	х	х	x								
Site 2	NNBS02-SB09	х	х	х	x								
Site 2	NNBS02-SD01	Х	х	х	x								
Site 2	NNBS02-SD02	Х	х	х	х								
Site 2	NNBS02-SD03	х	х	х	х								
Site 2	NNBS02-SD04	х	. X	х	х								
Site 2	NNBS02-SD05	х	х	х	x								
Site 2	NNBS02-SD06	х	х	х	x								
Site 2	NNBS02-SD07	Х	х	х	х								
Site 2	NNBS02-SD08	х	x	Х	х								

GRO	Table 1-3 GROUNDWATER AND SURFACE WATER SAMPLING PROGRAM FOR SITE 2 - NM SLAG PILE RI/FS								
Site	Sampling Location	Low Concentration VOC	TCL SVOC	Pest/PCB	TAL Metals and Cyanide (total)				
Site 2	NNBS02-MW01	Х	х	Х	Х				
Site 2	NNBS02-MW02	х	Х	Х	Х				
Site 2	NNBS02-SW01	х	х	Х	х				
Site 2	NNBS02-SW02	Х	х	х	х				
Site 2	NNBS02-SW03	Х	х	х	х				
Site 2	NNBS02-SW04	х	Х	Х	Х				

tab1-3.doc

----- Installation Property Boundary

Source: USGS Topographic Map, Norfolk North Quadrangle, VA, photoinspected 1989.

Figure 2-1 SITE LOCATION MAP Naval Base, Norfolk Norfolk, Virginia

Table 4-1
SURFACE WATER AND SEDIMENT SAMPLING PROGRAM FOR POST REMEDIATION ECOLOGICAL MONITORING
CAMP ALLEN LANDFILL

Site	Sampling Location	Low Level Volatiles OLC02	TCL VOC	TCL SVOC	TCL Pest/PCB	TAL Metals and Cyanide	Total Organic Carbon	Grain Size
Bousch Creek	NNBBCM-SW01L	X		х	×	(total)	(TOC)	
Bousch Creek	NNBBCM-SW01H	X		X		X	X	
Bousch Creek	NNBBCM-SW02L	x		X	×	X	X	
Bousch Creek	NNBBCM-SW02H	x		X	X	X	X	
Bousch Creek	NNBBCM-SW03L	x	-	X	X	X	X	
Bousch Creek	NNBBCM-SW03H	x			X	X	X	
Bousch Creek	NNBBCM-SW04L	X		X	X	X	X	
Bousch Creek	NNBBCM-SW04H	X		X	X	X	X	
Bousch Creek	NNBBCM-SW05L	X		X	X		X	
Bousch Creek	NNBBCM-SW05H	X				X	X	ii -
Bousch Creek	NNBBCM-SW06L	x		X X	X	X	X	
Bousch Creek	NNBBCM-SW06H	x		×	X	X	X	
Bousch Creek	NNBBCM-SW07L	x		x	x	X	X	
Bousch Creek	NNBBCM-SW07H	x		×	×	X	X	
Bousch Creek	NNBBCM-SW08L	x		×		X	X	
Bousch Creek	NNBBCM-SW08H	x		x	X	X	X	
Bousch Creek	NNBBCM-SW09L	x	-	x	x	X	X	
Bousch Creek	NNBBCM-SW09H	X		×	X	X	X	
Bousch Creek	NNBBCM-SW10L	x		×	×	X X	X X	
Bousch Creek	NNBBCM-SW10H	x		×	×	×	1.72	
Bousch Creek	NNBBCM-SW11L	x	-	x	X	×	X X	
Bousch Creek	NNBBCM-SW11H	x		x	x	x	×	
Bousch Creek	NNBBCM-SW12L	x		x	x	x	×	
Bousch Creek	NNBBCM-SW12H	х		x	x	x	×	
Bousch Creek	NNBBCM-SW13L	x		X	x	×	×	
Bousch Creek	NNBBCM-SW13H	x		X	x	×	×	
Bousch Creek	NNBBCM-SW14L	x		X	x	×	×	
Bousch Creek	NNBBCM-SW14H	х		x	x	×	×	
Bousch Creek	NNBBCM-SD01		х	x	x	X	×	X
Bousch Creek	NNBBCM-SD02	7. 7827	x	x	x	X	×	X
Bousch Creek	NNBBCM-SD03		x	x	x	×	×	X
Bousch Creek	NNBBCM-SD04		x	x	x	x	×	×
Bousch Creek	NNBBCM-SD05		х	X	x	x	· x	×
Bousch Creek	NNBBCM-SD06		x	x	x	×	×	340
Bousch Creek	NNBBCM-SD07		x	X	x	×	×	×

Table 4-1
SURFACE WATER AND SEDIMENT SAMPLING PROGRAM FOR POST REMEDIATION ECOLOGICAL MONITORING
CAMP ALLEN LANDFILL

Site	Sampling Location	Low Level Volatiles OLC02	TCL	TCL SVOC	TCL Pest/PCB	TAL Metals and Cyanide (total)	Total Organic Carbon (TOC)	Grain Size
Bousch Creek	NNBBCM-SD08		х	x	X	х	x	x
Bousch Creek	NNBBCM-SD09		х	x	х	x	x	х
Bousch Creek	NNBBCM-SD10		х	x	х	х	x	х
Bousch Creek	NNBBCM-SD11		x	x	x	х	x	х
Bousch Creek	NNBBCM-SD12		x	x	x	х	x	х
Bousch Creek	NNBBCM-SD13		х	x	x	х	x	х
Bousch Creek	NNBBCM-SD14		x	x	x	x	x	x

tab1-2.doc

Table 2-2
SUMMARY OF SURFACE WATER SAMPLES FOR OFFSITE LABORATORY ANALYSIS

Matrix	Laboratory Parameter	Samples	Field Duplicates ¹	Field Blanks²	Trip Blanks³	Matrix Spikes ⁴	Equipment Blanks ⁵	Matrix Total
Surface Water	Low Concentration VOC	28	3	1	2	0	1	35
	TCL Semivolatiles	28	3	1	0	1	1	34
	TCL Pesticides/PCBs	28	3	1	0	1	1	34
	TAL Metals	28	3	1	0	1	1	34
	TAL Cyanide	28	3	1	0	1	1	34
	TOC	28	3	1	0	1	1	34

Notes:

Note: This table is based on Navy Level D QA/QC requirements.

¹Field duplicates are collected at a frequency of 1 per 10.

²Field blanks are collected at a frequency of 1 per source per event (1 per week of sampling).

³Trip blanks are shipped with water samples submitted for volatiles analysis. Trip blanks are used to monitor contamination that could be introduced during transportation. Trip blanks are collected at a frequency of 1 per cooler of volatiles samples.

⁴Matrix spike/matrix spike duplicates (MS/MSD) are collected at a frequency of 1 per 20. MS/MSDs represent samples for which extra volume must be collected for the laboratory to perform required QC analyses. Triple the normal volumes will be collected for volatiles samples and double the normal volumes for inorganic samples.

⁵Equipment blanks are collected at a frequency of 1 per day and analyzed at a frequency of 1 every other day.

Table 2-4
SUMMARY OF SEDIMENT SAMPLES FOR OFFSITE LABORATORY ANALYSIS

Matrix	Laboratory Parameter	Samples	Field Duplicates ¹	Field Blanks ²	Trip Blanks³	Matrix Spikes⁴	Equipment Blank ⁵	Matrix Total
Sediment	TCL Volatiles	14	2	1	2	1	1	21
*	TCL Semivolatiles	14	2	1	0	1	1	19
	TCL Pesticides/PCBs	14	2	1	0	1	1	19
	TAL Metals and Cyanide	14	2	1	0	1	1	19
	TOC	14	2	1	0	1	1	19
	Grain Size	14	2	0	0	0	0	16

Notes:

Note: This table is based on Navy Level D QA/QC requirements.

¹Field duplicates are collected at a frequency of 1 per 10.

²Field blanks are collected at a frequency of 1 per source per event (1 per week of sampling).

³Trip blanks are shipped with samples submitted for volatiles analysis. Trip blanks are used to monitor contamination that could be introduced during transportation. Trip blanks are collected at a frequency of 1 per cooler of volatiles samples.

⁴Matrix spike/matrix spike duplicates (MS/MSD) are collected at a frequency of 1 per 20. MS/MSDs represent samples for which extra volume must be collected for the laboratory to perform required QC analyses. Triple the normal volumes will be collected for all analyses.

⁵Equipment blanks are collected at a frequency of 1 every other day.

<u>LEGEND</u>

SOIL SAMPLING LOCATION

CONCRETE SAMPLING LOCATION

Figure 1-1
PROPOSED CONCRETE AND SOIL
SAMPLING LOCATIONS
SWMU 01 - ACCUMULATION AREA
Naval Base, Norfolk

LEGEND

EXISTING WASTE DISPOSAL PIT

SOIL SAMPLING LOCATION

Figure 1-3
PROPOSED SOIL SAMPLING LOCATIONS
SWMU 06 - V28 WASTE DISPOSAL PIT
Naval Base, Norfolk

LEGEND

SOIL SAMPLING LOCATION

Figure 1-4
PROPOSED SOIL SAMPLING LOCATIONS
SWMU 08 - FIREFIGHTING
SCHOOL FACILITY
Naval Base, Norfolk

ATIONS
GHTING
ACILITY
Norfolk

3

EXISTING WASTE DISPOSAL PIT

GEOPROBE GROUNDWATER SAMPLING LOCATION

PROPOSED GROUNDWATER SAMPLING LOCATIONS SWMU 06 - V28 WASTE DISPOSAL PIT Naval Base, Norfolk

LEGEND

GEOPROBE GROUNDWATER SAMPLING LOCATION

Figure 1-6
PROPOSED GROUNDWATER SAMPLING LOCATIONS
SWMU 08 - FIREFIGHTING
SCHOOL FACILITY
Naval Base, Norfolk

	SOIL SAMP	Table 1-2 LING PROGRAM FOR SV	VMUs INVESTI	GATION	
Site	Sampling Location	TCL VOC	TCL SVOC	TCL PEST/PCB	TAL METALS AND CYANIDE (total)
SWMU 01	NNBU01-CC01	х	х	x	х
SWMU 01	NNBU01-CC02	Х	х	х	х
SWMU 01	NNBU01-SS01	х	х	х	х
SWMU 01	NNBU01-SS02	х	х	x	х
SWMU 01	NNBU01-SS03	х	х	х	х
SWMU 01	NNBU01-SS04	х	х	х	x
SWMU 01	NNBU01-SS05	х	х	х	х
SWMU 01	NNBU01-SS06	х	х	х	х
SWMU 04	NNBU04-SS01	х	х	х	х
SWMU 04	NNBU04-SS02	Х	х	х	х
SWMU 04	NNBU04-SS03	х	х	х	х
SWMU 04	NNBU04-SS04	х	х	х	х
SWMU 04	NNBU04-SS05	X	х	х	х
SWMU 04	NNBU04-SS06	x	х	х	х
SWMU 04	NNBU04-SS07	x	х	х	х
SWMU 04	NNBU04-SS08	x	х	х	х
SWMU 04	NNBU04-SS09	x	Х	х	х
SWMU 04	NNBU04-SS10	X	х	х	х
SWMU 04	NNBU04-SS11	X	х	х	х
SWMU 04	NNBU04-SS12	X	х	х	х
SWMU 06	NNBU06-SS01	X	х	х	х
SWMU 06	NNBU06-SS02	X	х	х	х
SWMU 08	NNBU08-SS01	X	х	х	х
SWMU 08	NNBU08-SS02	Х	х	х	х
SWMU 08	NNBU08-SS03	Х	х	х	х
SWMU 08	NNBU08-SS04	Х	х	х	х
SWMU 08	NNBU08-SS05	Х	х	х	х
SWMU 08	NNBU08-SS06	Х	х	х	х
SWMU 08	NNBU08-SS07	Х	х	х	х
SWMU 08	NNBU08-SS08	х	х	х	х

	Table 1-3 GROUNDWATER SAMPLING PROGRAM FOR SWMUs INVESTIGATION									
Site	Sampling Location	TCL VOC	TCL SVOC	PEST/PCB	TAL METALS AND CYANIDE (TOTAL)					
SWMU 06	NNBU06-MW02	х	х	х	х					
SWMU 06	NNBU06-MW03	х	х	х	х					
SWMU 06	NNBU06-GW01	х	х	Х	х					
SWMU 06	NNBU06-GW02	х	х	Х	Х					
SWMU 06	NNBU06-GW03	х	х	Х	Х					
SWMU 06	NNBU06-GW04	х	х	Х	х					
SWMU 06	NNBU06-GW05	Х	х	Х	х					
SWMU 06	NNBU06-GW06	х	х	Х	х					
SWMU 06	NNBU06-GW07	X	х	Х	х					
SWMU 08	NNBU08-GW01	x	х	х	Х					
SWMU 08	NNBU08-GW02	X	х	Х	Х					
SWMU 08	NNBU08-GW03	X	х	Х	х					
SWMU 08	NNBU08-GW04	х	х	х	Х					
SWMU 08	NNBU08-GW05	Х	х	Х	х					
SWMU 08	NNBU08-GW06	Х	х	х	х					
SWMU 08	NNBU08-GW07	х	х	х	х					
SWMU 08	NNBU08-GW08	х	х	Х	х					